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Abstract--A numerical procedure is presented for the solution of vapor bubble growth with radial symmetry 
from the thermodynamic critical size in an initially uniformly superheated liquid, which includes the 
influences of surface tension, liquid inertia and heat diffusion. Results are presented in the form of 
time varying interface radius, velocity, acceleration and temperature, with particular emphasis on how 
circumstances during the very early growth periods affect the later growth. The effect on the solution of 
the disturbance required to initiate the growth is examined in some detail. Comprehensive comparisons 
are made with previous experiments, analyses and numerical results. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The prediction of vapor bubble growth involves sur- 
face tension, liquid inertia and heat diffusion, and has 
been the subject of extensive study since the 1930s. As 
is well known, two intrinsic difficulties are encountered 
in analytical solutions in which the coupling of the 
momentum and energy equations are included: the 
nonlinear convection term in the energy equation, and 
the linking of the vapor pressure in the momentum 
equation with the vapor bubble wall temperature in 
the energy equation. It would seem that this problem 
has been resolved to a tenable degree of understanding 
when note is taken of the scarcity of related pub- 
lications since the work of Prosperetti and Plesset [1]. 

Following the review of prior works, to be presented 
below, it was deemed desirable to re-examine the 
problem of spherical vapor bubble growth. In 
addition to the lack of a detailed description of the 
early stages of vapor bubble growth from the critical 
size, a criterion is lacking as to the circumstances 
under which the various analytical solutions currently 
available can be used with confidence, for fluids with 
widely varying properties, and over wide ranges of 
system pressure and initial liquid superheat. It is an 
objective of the present work to provide not only a 
complete description of the spherical vapor bubble 
growth, for initially uniform liquid superheats here, 
but to demonstrate the domains of validity for the 
analytical solutions currently available and a pro- 
cedure for the appropriate selection. 

2. PRIOR WORKS 

Rayleigh [2] was the first to formulate the equation 
of motion for a spherical bubble growth (or collapse), 
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which was later to be known as the inertia controlled 
growth. Plesset and Zwick [3] considered the heat 
diffusion controlled spherical vapor bubble growth 
neglecting liquid inertia, and provided a zero-order 
solution for the bubble wall temperature with the 
assumption of a thin thermal boundary layer, necess- 
ary to make the problem tractable. This solution has 
been widely used in numerical computation of bubble 
growth for coupling with the equation of motion of 
Rayleigh [2], Plesset and Zwick [3] also provided an 
asymptotic solution for the bubble radius from the 
zero-order solution which is in good agreement with 
the experimental data of Dergarabedian [4] with water 
for moderate superheats up to 6°C. The analyses of 
Forster and Zuber [5] and Birkhoff et al. [6] were 
basically in agreement with that of Plesset and Zwick 
[3]. Scriven [7] solves the energy equation without 
assuming a thin thermal boundary layer, and the 
asymptotic solution for moderate superheat was 
identical to that of Plesset and Zwick [3]. The exper- 
iments of Kosky [8] for high superheat up to 36°C 
and the short term microgravity experiments of Flor- 
schuetz et al. [9] for a superheat of 3.6°C are also in 
good agreement with the asymptotic solution of Ples- 
set and Zwick [3]. The analytical solutions described 
to this point may be classified as thermal diffusion 
controlled growth. 

Inertia controlled growth was considered thereafter 
by Lien [10] in the conduct of low pressure exper- 
iments up to 0.01 atm with water. It was concluded 
that liquid inertia is of significance under low pressure 
conditions, with heat diffusion coming to dominate 
growth as the pressure increases, provided that the 
Rayleigh [2] solution fitted the experiments well at 
very low pressure. 

Mikic et al. [11] effectively combined the inertia 
and heat diffusion controlled growth by using the 
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c specific heat 
h~ latent heat 
Ja Jakob number 

(= plcl(T~ -- T,~)/pvhrg ) 
k thermal conductivity 
P pressure 
r radial coordinate 
R(t)  bubble radius 
R ~ dimensionless radius defined in 

equation (9) 
R* dimensionless radius defined in 

equation (11) 
t time 
t + dimensionless time defined in 

equation (9) 
t* dimensionless time defined in 

equation (l 1 ) 
T temperature 
T,~,~ saturation temperature corresponding 

to system pressure 

NOMENCLATURE 

AT 
•P 
U 

(T~ - T~,,), bulk liquid superheat 
P , - P ,  
velocity. 

Greek symbols 
:~ thermal diffusivity 
t~ dynamic viscosity, also defined in 

equation ( 11 ) 
~ density 
rr surface tension. 

Subscripts 
d delay 
i liquid vapor interface 
I liquid 
1 radial 
v vapor 
J_ infinite or far field. 

Clausius-Clapeyron equation for the vapor pressure 
curve, assuming thermal equilibrium in the vapor bub- 
ble so that the vapor pressure corresponds to the bub- 
ble wall temperature as the bubble grows. The result 
was a generalized closed form expression which was 
valid over the entire growth range, with good agree- 
ment with the experimental data of Lien [10]. 

Theofanous and Patel [12] reconsidered the analysis 
ofMikic et al. [11] relative to the form of the Clausius 
Clapeyron equation used, and upon comparison with 
the measurements of Bohrer [13] demonstrated that 
the bubble growth is considerably understated. As a 
result, an empirical linear relation for the vapor- 
pressure was suggested to replace the Clausius- 
Clapeyron relation. The adequacy of this linear re- 
lation in describing the physical process will be con- 
sidered in detail later here. 

A number of numerical computations were carried 
out by coupling the equation of motion with various 
special forms of the energy equation : Theofanous et 
al. [14] used a quadratic temperature distribution in 
place of the energy equation ; Board and Duffey [15] 
used a one-dimensional (lD) transient conduction 
prediction; and Prosperetti and Plesset [1] used the 
zero-order solution mentioned earlier for the bubble 
wall temperature. 

Dalle Donne and Ferranti [16] were among the first 
to solve the complete equations of energy and motion, 
using sodium as the medium, with no assumptions 
being made about the thermal boundary layer at the 
l iquid~apor interface, as was found necessary by 
Plesset and Zwick [3]. More accurate details of the 
early stages of bubble growth were provided. 

Although the initial stages of vapor bubble growth 

are generally considered to be insignificant, since they 
lie outside time scales of practical interest, numerical 
treatments require that perturbations be imposed on 
the critical size vapor bubble to initiate the growth. 
Theofanous et al. [14] initiated the bubble growth with 
a small pressure perturbation at t = 0; Board and 
Duffey [15] perturbed the equilibrium radius by 
0.05%: and both Plesset and Zwick [3] and Dalle 
Donne and Ferranti [16] introduced an energy gen- 
eration term in the energy equation. It is uniformly 
postulated that the perturbations applied do not affect 
the subsequent vapor bubble growth provided that 
the perturbations are sufficiently small. The effects of 
variations in such perturbations will be considered 
below. 

Utilizing the results of Dalle Donne and Ferranti 
[16] as a basis for comparison, Prosperetti and Plesset 
[1] reconsidered two facets of earlier analyses: the 
validity of the assumption of a thin thermal boundary 
layer, and the effects of using a linear relation for the 
vapor pressure curve as suggested by Theofanous and 
Patel [12]. It was demonstrated that the thin thermal 
boundary layer assumption is fairly good unless 
extremely low levels of superheat are used, and that 
the application of the linear relation for the vapor 
pressure curve tends to somewhat overestimate the 
bubble growth, especially at high superheat levels. It 
was stated that this overestimate does not lead to a 
serious error in the radius-time behavior for ranges of 
practical interest. A modified form of the expression 
of Mikic et al. [11] was then developed, using the 
linear relation suggested by Theofanous and Patel 
[12], with the recognition that these analytical solu- 
tions can not correctly describe the early or surface 
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tension dominated stages of growth, which in any case 
may not be of practical interest. 

To assist in the assessment of prior analytical solu- 
tions with respect to the complete solutions presented 
here, the relationship developed in these prior works 
will be given in brief below. 

3. ANALYTICAL SOLUTIONS OF PRIOR WORKS 

Rayleigh [2] formulated the equation of motion as : 

d:R 3;dR   ev-e  
' -  p, (1) 

A surface tension term is added later by Plesset and 
Zwick [3] as: 

d2R 3_(dR'~ 2 P v - P ~  2~ 
R dt 2 + 2\dt . ]  p, pLR" (2) 

Assuming that the pressure difference ( P . - P ~ )  is 
constant, equation (1) can be solved for dR/dt : 

dR (2 (Pv -  P~)~ '/2 
dt \ ~Pl ] (3) 

Equation (3) is one form of the so-called inertia 
controlled growth, and may be considered as an 
adequate description if the initial superheat is 
sufficiently large or the system pressure is sufficiently 
low. Plesset and Zwick [17] derived a zero-order solu- 
tion for the bubble wall temperature from the energy 
equation, assuming a thin thermal boundary layer, as 

/ n , ¢ x  

f ~ ' ~ l / 2  (~t R2(x)l~-~r)r=R(x ) dx 

~J~ R4(y )dy)  

Piesset and Zwick [3] later derived an asymptotic 
solution for the bubble growth from this zero-order 
solution, which is valid only for times sufficiently large 
that the growth velocity is much smaller than that 
corresponding to the inertia controlled case, given as : 

dR l(lZct,)'/2 plC,(Too-Tsa,) 
¥ = (5) 

Mikic et aL [11] resolved the complexity of solving 
the combination of the energy and momentum equa- 
tions by combining the two growth rate equation lim- 
its given by equations (3) and (5), in effect. The form 
of the Clausius-elapeyron equation, integrated for 
constant properties at P~ and T,,t is : 

P~ -- Poo = ~ ( T ,  - Tsat) (6) 

and is substituted into the inertia dominated growth 
rate equation (3) to express the driving potential in 
terms of temperatures rather than pressure, resulting 
in: 

dR (2pvhfs(Tv- T..t).) 1/2 
d~- = \ ~ (7) 

T..t in equation (5) was replace by the instantaneous 
vapor temperature Tv, which retains the physical prin- 
ciples involved, giving : 

dR 1 (12e,~ '/2 p,c , (T~-  T,) 
d~- = 2 \ ~ / - /  Pvvh~ " (8) 

Eliminating T~ between equations (7) and (8) and 
integrating dR/dt yields the closed-form expression of 
Mikic et aL [11] as : 

R + =~[(t++l)3/2-(t+)3/2-1] (9) 

where 

R t 
R + = t + - 

BE/A B:/A 2 

=(2AThfgP~-~ '/2 B =  ja2~, 
A \ 3T, atP~ / 

Equation (9) simplifies to the Rayleigh solution 
equation (7) for t ÷ << 1 and to the Plesset and Zwick 
solution equation (8) for t ÷ >> 1, and is in good agree- 
ment with the experiments of Lien [10] with water, 
except for those at very low pressure. 

Theofanous and Patel [12] suggested a modification 
to the solution of Mikic et al. [11] by the use of a 
linear vapor pressure relation instead of the Clausius- 
Clapeyron equation, justifying it on the basis of 
improved comparison with the experiments of  Bohrer 
[l 3] for R113. The linear relationship proposed is : 

P~(Too) -Poo ._  
P v = P ~ +  T ~ - ~  -tlv-Tsat). (10) 

Prosperetti and Plesset [1] carried out numerical 
computations by coupling equations (2) and (4), using 
the exact vapor-pressure curve, with excellent agree- 
ment with the numerical results of Dalle Donne and 
Ferranti [16], except at very low superheats. The dis- 
crepancy at low levels of superheat is to be expected, 
since the assumption of the thin thermal boundary 
layer is no longer valid. Computations were also car- 
ded out by coupling equations (2) and (4) using the 
linear vapor-pressure relation given by equation (10), 
with the result that high superheats somewhat over- 
estimate the growth. However, it was stated that this 
overestimate does not lead to a serious error in the 
radius-time behavior of vapor bubbles for ranges of 
practical interest. Consequently, a scaled modified 
closed-form expression of Mikic et al. [ll] was 
provided, adopting the linear vapor-pressure relation, 
a s  : 

R* = ~(2/3)1/2 [(½ ,2 t* + l) ~/~- (½.~t*) *~2-11 (11) 

where 
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R t* R* = H 2 ~ =/~#2t 

1 [2act~ 1'2 hfg "T 

perature is imposed, for the initial time step only, to 
provide the disturbance necessary for growth to begin, 
expressed as : 

T,. = T.~ +ATdi~turb. (12) 

× Ip~[P~(T~)_p~] } ,.4 

[P,~ (T~) -- p~]3/2 
2ap~:2 

Comparisons will be provided below between the 
current predictions and those of Mikic et al. [11], 
equation (9), and of Prosperetti and Plesset [1], equa- 
tion (11), and therefore, indirectly, between these lat- 
ter two, for a variety of fluids. 

4. CURRENT SOLUTIONS 

In order to study the characteristics of spherically 
symmetric vapor bubble growth in detail, a Fortran 
program was written, compatible for use on currently 
available PCs, to model the growth (or collapse) using 
a highly accurate numerical scheme, taking into 
account the variations of properties with temperature. 
The equation of motion and the complete energy 
equation are solved simultaneously using the vapo~ 
pressure curve. For the infinitesimal time steps, the 
equation of motion is solved by means of the Runge- 
Kutta method to determine the locus of the bubble 
interface, which provides the boundary condition for 
the energy equation. The complexity of the problem 
is simplified by adopting the Landau coordinate trans- 
formation to immobilize the moving boundary. After 
the transformation, the energy equation is solved by 
the finite difference method (FDM) with the aid of 
the Thomas algorithm, the TriDiagonal Matrix Algo- 
rithm. The formulations of the governing equations 
used in computations are given in Appendix A and 
details of the numerical solution procedure are given 
in Appendix B. 

4.1. Initial and early stages o f  bubble growth 
A spherical vapor bubble is assumed to form and 

begin its growth from the thermodynamic critical size. 
This formation is based on homogeneous nucleation 
theory (e.g. Skripov [18]), such that an increase in the 
bulk liquid superheat decreases the work of formation 
of the critical size nucleus and increases the mean 
level of the energy fluctuations of clusters of liquid 
molecules. As a result of these factors the nucleus is 
highly unstable. The vapor pressure in the critical size 
nucleus is higher than that of the adjacent liquid, and 
is balanced mechanically by the surface tension. When 
making numerical computations, a small disturbance 
is required to initiate the vapor bubble growth from 
the critical size, which could be interpreted as a fluc- 
tuation in temperature or pressure at the liquid-vapor 
interface. In the computational process here a vapor 
temperature slightly higher than the initial bulk tem- 

Computations of bubble radius and interface vel- 
ocity are presented in Fig. 1 to demonstrate the effects 
of the magnitude of the initial disturbance, for water 
at atmospheric pressure and superheats of 3.1 °C and 
36"C. In the early period, when the forces are nearly 
in equilibrium, the growth is imperceptibly small, but 
accelerates with increases in bubble size as the surface 
tension reduces. The time interval between the 
imposed disturbance and where the bubble radius 
undergoes a perceptible change is defined as the bub- 
ble growth delay time (ta), and varies depending on 
the magnitude of the disturbance. Two general con- 
clusions might be deduced for the sample com- 
putations presented in Fig. 1, in which temperature 
disturbances of 10 -~, 10 -5 and 10-9°C were  used. For 
the high and moderate superheat levels in Fig. I, the 
bubble growth delay times are below time periods of 
practical interest, and converge quickly to an asymp- 
totic value, as demonstrated in Fig. 2. An arbitrary 
initial temperature disturbance of 10-4°C is used in 
all computations presented hereafter. For reference 
purposes it might be noted that a temperature dis- 
turbance of 10-5°C in the vapor temperature cor- 
responds to the energy content of seven molecules out 
of a total of approximately 107 in a critical size vapor 
bubble in water at atmospheric pressure superheated 
by 36°C. The other conclusion to be noted in Fig. 1 is 
that the subsequent bubble growth is uninfluenced by 
differences in the disturbance, beginning at 10 -3 S and 
10--5 s for superheats of 3. I°C and 36°C, respectively. 

The maximum liquid-vapor interface velocity in 
Fig. 1 is about 10 m s -~ for a superheat of 36°C, 
considerably less than the sonic velocity, so that the 
assumption of a uniform pressure in vapor bubble is 
justified. Even for an extreme case of ! 00°C superheat 
at a pressure of 4 atm, computation provided a 
maximum liquid-vapor interface velocity of only 35 
m s -~. A small dip on the interface velocity curve in 
Fig. 1 occurs at about 10 -5 s for the superheat of 
3. I'~C, and is related to the relative effects of surface 
tension and pressure difference between the bubble 
vapor and bulk liquid. This phenomena is examined 
in detail by Lee [19]. The computed liquid-vapor 
interface accelerations corresponding to the identical 
conditions of Fig. 1 are shown in Fig. 3. Even a rela- 
tively small superheat of 3.1 °C produces an enormous 
acceleration of 2 x 104 s -z, albeit of short duration. 
The bubble wall accelerates as the equilibrium of sur- 
face tension is removed, but is limited by the adverse 
liquid inertia. The subsequent decrease of the interface 
acceleration to negative values is a consequence of the 
inability of the vapor production rate to match the 
early growth rates seen in Fig. 1. The deceleration 
eventually approaches zero asymptotically. It is here 
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Fig. 1. Influence of magnitude of initial temperature disturbance on the early vapor bubble growth for 
water at atmospheric pressure. 

that the bubble growth is then controlled by thermal 
diffusion, which some models successfully describe, as 
amplified in the next section. It is also to be noted in 
Fig. 3 that no significant changes in peak acceleration 
occur as the disturbance is varied. Since the early 
stages of bubble growth are affected by both surface 
tension and liquid inertia, as well as by the magnitude 
of the disturbance required, it is not unexpected that 
difficulties arise in obtaining analytical solutions. Cal- 
culated results demonstrate the well-known phenom- 
ena that the thermal boundary layer thickness 
increases continuously with time. 

4.2. Comparison with other works 
In order to assess the adequacy of the com- 

putational model developed here, comparisons will 
now be made with previous experiments, analyses and 
numerical results. 

The measurement of  water vapor bubbles at the 
thermodynamic critical size involves insurmountable 
experimental difficulties at present for moderate and 
high levels of liquid superheat. However, creative 

experimental techniques of Dergarabedian [20] pro- 
vided measurements of bubble growth in water at 
atmospheric pressure with low levels of liquid super- 
heat, which included measurements of the ther- 
modynamic critical size. These measurements are plot- 
ted in Fig. 4, along with values computed by the 
procedures described above for liquid superheats of 
0.8°C and 1.0°C. The time origins for the com- 
putations were shifted for the best fit by selecting 
arbitrary values of 10-4°C and 10-9°C for the respec- 
tive disturbances. To be contrasted with the behavior 
demonstrated in Fig. 1, where the magnitude of the 
disturbances have negligible effect on measurable bub- 
ble growths at moderate and high bulk liquid super- 
heat levels, the disturbance does influence the measur- 
able levels at low levels of superheat. 

The present computations are compared with 
measurements of Lien [10] in Fig. 5 for water at vari- 
ous subatmospheric pressure levels, with reasonably 
good agreement. 

Comparisons of the vapor bubble sizes between 
the current computations and a number of previous 
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Fig. 2. Effect of initial temperature disturbance on bubble growth delay time for water. 

analyses are given in Figs. 6 and 7 for water at atmo- 
spheric pressure and a relatively higher superheat of 
36°C, the same condition used in Figs 1 and 3. The 
Rayleigh curve denotes the inertia controlled growth, 
with the corresponding most rapid growth. The time 
periods covered are identical, while the behavior dur- 
ing the very early periods is amplified in Fig. 7 by the 
use of logarithmic scales. The consequence of neg- 
lecting surface tension is evident during the early bub- 
ble growth period, as had been anticipated in dis- 
cussions associated with the prior analyses. The 
relationship between the analyses of Mikic et al. [11] 
and of Prosperetti and Plesset [1] will be considered 
in some detail below. 

The present computations produce excellent agree- 
ment with the numerical work of Dalle Donne and 
Ferranti [16] for various superheats and system pres- 
sure in sodium. A typical result is shown in Fig. 8. 
Two major differences exist between the present work 
and that of Dalle Donne: (1) the former uses the 
Landau transformation while the latter uses the Lag- 
range transformation to immobilize the moving 
boundary, (2) the former uses a temperature dis- 
turbance for one time step only at the liquid-vapor 

interface at the beginning of the computation process, 
while the latter uses a constant energy source during 
the entire computation period to initiate the bubble 
growth from the condition of metastable equilibrium. 

4.3. General characteristics of  bubble growth 
In order to illustrate the relative effects of liquid 

inertia, surface tension, heat diffusion and vapor pres- 
sure on vapor bubble growth, three fluids having 
rather divergent properties were selected for more 
detailed examination : water, R-113 and sodium. Fig- 
ures 9 and 10 present results obtained with the current 
numerical procedure for a high superheat of 36°C and 
at atmospheric pressure. Figure 9 gives the radius and 
liquid-vapor interface velocity vs time, and Fig. 10 
presents the interface acceleration and vapor pressure. 
It is noted that the maximum interface velocities and 
peak acceleration levels are not significantly different 
between the three fluids, although the sizes at 0.1 s 
differ by two orders, associated with the time variation 
of the interface velocities. Furthermore, the bubble 
growth delay time is considerably greater for the 
sodium than for the R-113 and water, owing to its 
relative large thermal diffusivity. The same initial tern- 
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Fig. 3. Influence of magnitude of initial temperature disturbance on the early liquid vapor interface 
acceleration. Water at atmospheric pressure at initial superheat of 3.1 °C. 

perature disturbance of 10-4°C is used for each of the 
fluids. The initial vapor pressures given in Fig. 10 
correspond to the initial bulk temperature, with the 
pressure for water R- 113 dropping rapidly to the sys- 
tem pressure at about 1 x 10  - 3  S, while for sodium this 
occurs at about 1 x 10 -2 s. 

In order to compare the analytical solutions of 
Mikic et al. [11] and Prosperetti and Plesset [1] with 
the results of the present numerical computations, the 
radii and velocities in Fig. 9 were normalized using 
the respective nondimensional definitions, and are 
plotted as Figs 11 and 12, respectively. As dem- 
onstrated in Fig. 11, the radius and velocity curves 
converge quite well to the solution of Mikic et al. [11] 
except for the early stage of growth. On the other 
hand, the modified solution by Prosperetti and Plesset 
[1] in Fig. 12 overestimates the vapor bubble growth 
by about 43%. 

As described earlier, the only difference between 
the solutions of Mikic et al. [11] and Prosperetti and 
Plesset [1] is that the former uses the integrated form 

of the Clausius-Clapeyron equation (6), with constant 
properties evaluated at the saturation temperature, 
while the latter uses the linear relation, equation (10). 
The distinction between the use of these forms and 
the true vapor pressure curve is illustrated graphically 
in Fig. 13. The relations between the internal bubble 
vapor pressure and vapor temperature proceed as 
indicated by the arrows. It becomes obvious that for 
a given system temperature the integrated Clapeyron 
equation underestimates the vapor pressure while the 
linear relation overestimates it. The underestimation 
of the Clapeyron equation is substantial in the begin- 
ning at T~, but converges to the exact curve as the 
bubble grows and T~ approaches T~t, while the linear 
relation matches both the beginning and the end. 
Additional comparisons similar to Figs 11 and 12 were 
conducted for these fluids, covering superheats from 
3°C to 100°C and system pressures from 0.1 atm and 
6 atm. A maximum error of  39% was obtained 
between the bubble size computed by the solution of 
Mikic et al. [11] and by the present procedure, and 
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Fig. 4. Comparison of computations of vapor bubble growth with measurements of Dergarabedian [20] 
for water at atmospheric pressure with low initial liquid superheats. 

0.03 



Spherical vapor bubble growth in superheated liquids 2435 

1.6e-2 

1.4e-2 

1.2e-2 

Present computation 

[] Experimental Data 

X Experimental Data 

4 Experimental Data 

1.0e-2 

8.0e-3 

6.0e-3 

4.0e-3 

2.0e-3 

O.Oe+O ~ - -  

O.Oe+O 

Psys=12.59 kPa 
Superheat=10.67 °C 

Tbulk=61.06 °C 
Psys=l.26 kPa 

aperheat=15.74 *C 
Tbulk=26.15 °C 

/ X KxXX XXX 

Psys=31i.66 kPa 
Supe~eat---9.0 °C 
Tbulk=84.08 °C 

2.0e-3 4.0e-3 6.0e-3 8.0e-3 1.Oe-2 1,2e-2 1.4e-2 

(sec) 

Fig. 5. Comparison of present numerical calculations with measurements of Lien [10] with water over a 
range of subatmospheric pressure levels. 
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Fig. 6. Comparison of present numerical calculations with various analytical solutions. Water at atmo- 
spheric pressure uniformly superheated to 36'JC, Ja = 110. 
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Fig. 8. Comparisons of present computed results with the numerical work of Dalle Donne and Ferranti 
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then only with R-113 for a superheat of 100C at 1 
atm. It is found that the modified solution of  Pro- 
speretti and Plesset [1] always overestimates the bub- 
ble size considerably, the more so as either the super- 
heat increases or the pressure decreases. For  a 
superheat of  36°C and pressure of  0.1 atm the error is 
about 74%, while for a superheat of  100'~C at 1 atm 
pressure this increases to about 160%. The integrated 

Clapeyron equation works well in the solution of  
Mikic e t  al. [I 1] even though Fig. 13 shows a dis- 
crepancy compared to the exact vapor pressure curve 
because the vapor pressure (Pv) decreases rapidly dur- 
ing the early bubble growth period, within about 1 ms 
as seen in Fig. 10, to the system pressure (P,~). 

In order to more specifically classify the domains in 
which liquid inertia and heat diffusion effects domi- 
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nate, the inertia controlled equation (7) and diffusion 
controlled equation (8) are superimposed on the solu- 
tion of Mikic et al. [11], equation (9) in Fig. 14, along 
with experimental data for various fluids under  a var- 
iety of  conditions. The upper and lower limits are 
defined as those values of t ÷ where a discrepancy of 
10% exists between equations (7) and (8) and the 
solution of Mikic et al. [11]. Experiments designated 
by 1-3 in Fig. 14 are in the region of heat diffusion 
controlled growth, experiments 4-8 are in the region 
of the intermediate range, while experiment 9 is in the 
region of inertia controlled growth. Experiments 1 
and 9 are seen to diverge from the solution of Mikic 
et al. [11], and are associated with respective surface 
tension and liquid inertia effects being significant dur- 
ing the early stages of bubble growth. Both of these 
behaviors are described quite well by the com- 
putational procedures presented here and by Lee [19]. 

5. CONCLUSIONS 

The numerical procedure for spherical vapor bub- 
ble growth successfully describes the complete process 
from the thermodynamic critical state over the widest 
ranges of pressure and superheat encountered in 
experimental work. 

The disturbance necessary to compute vapor bubble 
growth from the critical size does not  significantly 
affect subsequent bubble growth except for very low 
levels of superheat, provided that the disturbance is 
sufficiently small, and manifests itself as a change in 
the bubble growth delay time. The delay time con- 
verges to a constant  as the magnitude of the dis- 
turbance decreases. The early stages of the growth are 
governed by surface tension and liquid inertia, and 
becomes of significance as either the initial liquid 
superheat or system pressure decreases. The bubble 
growth tends to become inertia controlled as either 
the liquid superheat increases or the system pressure 
decreases, or tends to become heat diffusion controlled 
as either the liquid superheat decreases or the system 
pressure increases. 

Except for the early stages of the bubble growth, 
the closed form solution of Mikic et al. [1 l] is in 
good agreement not  only with the present numerical 
computations, but  also with a wide variety of exper- 
imental results. The early stages involve both surface 
tension and liquid inertia, which complicate the pre- 
dictions by analytical methods. 
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APPENDIX A. FORMULATION OF GOVERNING 
EQUATIONS 

The major assumptions made in this work are : 

(1) Bubble remains spherical. 
(2) A uniform pressure and temperature exist within the 

vapor bubble. 
(3) The vapor temperature inside the bubble is at the 

liquid-vapor interface temperature, Tv = Ti. 
(4) The liquid is incompressible. 
The momentum equation in spherical coordinates is given 

by : 

Ou +U~r lOP #[I O [ 20U, 2#) 
O~ p dr F Pike- ~r~ r ~r)--  ~- " (A1) 

The continuity equation with assumption (4) is given by : 
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~(~-~) = o. 

Using the continuity equation (A2) and integrating equation 
(A 1) from the bubble surface (R) to infinity (~ ) ,  the momen- 
tum equation is written in terms of the bubble radius : 

d ~R 3 { d R )  2 P R - P ~  
R + 

dt  2 2 \  d t )  g.p, 

where 

The balance of pressure across the liquid-vapor interface 
gives : 

2a(T) . . / t  dR 
P,.(T)-PR = ~ ~-4~ d t  

w h e r e  P R  is the liquid pressure adjacent the bubble wall. 
Inserting equation (A4) into equation (A3) yields 

R d 2 R  3 / d R \  2 P v ( T ) - P .  2a(T) 4 /* dR 

The initial conditions are : 

dR 
R ( 0 ) = &  and d ~ ( 0 ) = 0 a t t = 0 .  (A6) 

The driving force for the bubble growth in equation (A5) 
is the pressure difference between the vapor bubble and the 
liquid adjacent the bubble, which is constrained by the sur- 
face tension. Equation (A5) implies that static equilibrium 
will exist when the first and second derivatives are zero. 
For the initial vapor bubble of  critical size, this gives, since 
T~ = T,~ initially : 

Rc = m 
2a(T) 

p v ( T ) _ p ~  " 

The energy equation in spherical coordinates is : 

eT =(o r 2_e G 
cSt +u '  ?~Tr = \Or e + r ~gr ] 

where 

R 2 d R  
/3 r = g 

r 2 dt " 

The initial condition is : 

A P P E N D I X  B. N U M E R I C A L  S O L U T I O N  
(A2) P R O C E D U R E  

A program was written in Fortran to solve the transient 
spherical bubble growth problem in superheated liquids. The 
solution method uses the implicit finite difference method for 
the energy equation, with the explicit boundary condition 
given by equation (A11). An irregular grid is adopted for 

(A3) the liquid to minimize the computation time, with the grid 
spacing decreasing as the bubble interface is approached. 100 
nodes were used for about 2 mm of the thermal boundary 
layer. The positions of the control volume faces are deter- 
mined according to the relation : 

/ i - iV '  
0' = t n  1) i =  1 , 2 , 3 . . . n  (BI) 

where n is total number of control volume faces and p is an 
exponent suited to the problem, usually taken to be between 
1 and 3. I fp = 1, a regular grid results ; i fp  > 1, an irregular 

(A4) grid results. 
A small disturbance is necessary in order to initiate the 

bubble growth from the critical size, which is in metastable 
equilibrium. In this work, a small temperature disturbance 
is given once at the liquid-vapor interface, and thereafter the 
program runs without further disturbances. 

A dimensionless coordinate (r/) is introduced to immo- 
bilize the moving boundary, as given by Sparrow et al. [21], 
and referred to as the Landau coordinate : 

(A5) 
r - R(t)  

O <~ q <~ 1 R(t) <~ r <~ R ( t ) + 6  (B2) ; 1 -  ¢$ 

where 6 is an arbitrary distance which can be considered to 
correspond to a thermal boundary layer. The conservative 
forms of  the continuity and the energy equation are used to 
begin the coordinate transformation. 

~ 0 
~ ( r -  p) + ~r(Pr 'u ) = 0 (n3) 

0 2 0 , 0 / 2 c~T\ 
~ ( r  ph)+c~r(Pr~uh ) =~rr tr  k~.r  ). (B4) 

The transformation of the governing equations is facili- 
(A7) tared by the following relations, also given by Sparrow et al. 

[21]: 

(B5) 
8r 6 c~;1 8t - ~gt 6 Or/ 

(A8) ?r d6 dR 
r" = ~?Tt( q, t) = qdrr + ~-r '  (B6) 

The continuity and energy equations (B3) and (B4) can be 
transformed to the immobilized equations by using equations 

(A9) (B2), (B5) and (B6), as was done by Kim and Kaviany 
[22] based on the work of Sparrow et al. [21]. This has 
the significant effect of eliminating the convection term in 
equation (B4), with the result : 

T(r,O) = T .... (AI0) 

The boundary conditions are: T(~ ,  t) = T, 

(Al l )  
2 / 0 T \  d / 4  ~ \ 

4, , .  

where 

Equation (AI 1) is the heat balance at the bubble liquid 
vapor interface. The bubble growth problem in a superheated 
liquid is solved by coupling equation (A5) and equation 
(A8), with the initial and boundary conditions given by equa- 
tions (A6), (A10) and (AI 1), together with the vapor pres- 
sure relation. 

( [  0V~ ~3F 

0 f 8 V \  OJ 

0t / (B9) 

r2k 8 T  
J(q, t )  = F(t 1 , t ) -  6 Or 1 (B10) 



Spherical vapor bubble growth in superheated liquids 2447 

J 3  (Bll)  V(r/, t) = ~ r 

r(th t) = tl6 + R(t) .  (B12) 

The term F(t/, t) and the term J(t/, t) represent the mass 
flux and the energy flux, respectively, across the face of the 
control volume. 

Now, the transformed conservation equations (B7) and 
(B8) are discretized by using the implicit numerical scheme 
of Patankar [23]. For a typical control volume, the inte- 
gration of equation (B8) with the aid of equation (B7) gives: 

ctpTp = ~trTE+CtwTw+b (BI3) 

where 

~ = ~ + ~ w + ~ O ,  ~o pc(AV) ° 
At (B14) 

~E = D . A ( I P ~ l ) + m a x  {--cF~,O} (B15) 

~w = D w A ( l P w [ ) + m a x  { - c F ~ , O }  (BI6) 

r~k 2 rwk cF~ cFw 
O¢=5(Aq)¢ D~- f (Aq)w P ¢ = ~  Pw= D-~- 

(B17) 

b -  o o (AV)~ v o - v w  (AV) ° o v o. - -  0t e T p  = = V e - 

( B 1 8 )  

1 3 1 3 (B19) Ve=~re Vw=~rw 

r ~ = q e f + R ( t )  r w = q w t + R ( t ) .  (B20) 

The various numerical schemes developed and used in 
recent years have been formulated as different choices of the 
function A(IP[) in equations (B15) and (B16), as developed 
by Patankar [23], which amount to different means for 
expressing the derivatives between nodal points. The power 
law scheme suggested by Patankar [23] is used here : 

A(IP~I) = max {0,(1-0.lIP=l) 5} (B21) 

a(Ie~l) = max {0,(1-0.11e~l)s}. (B22) 

The max {B, C} denotes the greater of B and C. 
The previous value at time t is known and is denoted by 

using the superscript "o",  while the new value at time t + At 
is unknown and is denoted by using no superscript. The 
diseretized equation (B13) can be solved efficiently by using 
TDMA (TriDiagonal Matrix Algorithm) with the two afore- 
mentioned boundary conditions equation (A11), which can 
be discretized considering the finite volume at the boundary : 

o r  

where 

• (Ar)~ Tw - T°w _ k A T e  - Tw d / 4  3 "x 
p,c,.., 2 (At) (Ar)w -hfg~l~R P~) 

(B23) 

2Fo T ° -- 2FoQxk 
Tw - Tp + (B24) 

1 + 2 F 0  1 +2F0 

ctAt heg(Ar)w dR 
F0 =- Qxk dt Pv. (Ar)~' k 

Equation (B24) is used as the discretized boundary con- 
dition for the energy equation, since d R / d t  can be obtained 
from a time step solution of the momentum equation (A5) 
by using the Runge-Kutta method. 

The computation of bubble growth is begun from the 
critical radius given by equation (A7) for the initial values 
of the bulk temperature (To) and the system pressure (P~). 
A vapor temperature slightly higher than the initial bulk 
temperature, given by equation (12), is imposed for the initial 
time step to provide the disturbance necessary for growth 
from the critical size. This small disturbance does not affect 
the subsequent bubble growth except during the very early 
stages of bubble, and could be interpreted as a small stat- 
istical fluctuation of the local liquid temperature in the vicin- 
ity of the critical size vapor bubble. Once this disturbance is 
given, equation (A5) is solved by means of the Runge-Kutta 
method assuming that the pressure is constant for the short 
period of the time step, so that R, g and K are produced. The 
g is used to solve equation (A11), the boundary condition at 
the liquid-vapor interface. The discretization equation for 
equation (A8) is then solved by means of the TDMA so that 
a new interface temperature (7',.) is determined, which then 
is used to obtain the vapor pressure corresponding to the 
interface temperature with assumption (3) in Appendix A. 
This process is iterated to update the temperature variation 
until the velocity difference between the time step ( i -  1) and 
03 converges to zero. The convergence is so fast that only 
two or three iterations are usually required to satisfy the 
convergence limit. The actual time required is dependent 
upon how the time step variation is arranged. Although the 
implicit scheme is generally described as stable, a realistic 
solution does not necessarily follow for sufficiently large time 
steps. In the present work, a time step of 10 -s s, determined 
empirically, is employed initially and increased as bubble 
growth takes place. As stated earlier, a maximum of 100 
nodes were used for the maximum thermal boundary layer 
thickness of about 2 mm. Details of the numerical scheme 
are give in Lee [19]. 


